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The use of Pólya’s theorem in crystallography and other applications has greatly

simplified many counting and coloring problems. Given a group of equivalences

acting on a set, Pólya’s theorem equates the number of unique subsets with

the orbits of the group action. For a lattice and a given group of periodic

equivalences, the number of nonequivalent subsets of the lattice can be solved

using Pólya’s counting on the group of relevant symmetries acting on the lattice.

When equivalence is defined via a sublattice, the use of Pólya’s theorem is

equivalent to knowing the cycle index of the action of the group elements on

a related finite group structure. A simple algebraic method is presented to

determine the cycle index for a group element acting on a lattice subject to

certain periodicity arguments.

1. Introduction

Using Pólya’s theorem, we present a mathematical method to

determine the number of nonequivalent periodic colorings of

a lattice. This method is used to obtain explicit results in

two dimensions, although the method generalizes to higher

dimensions. There are a number of ways to define a lattice. We

define a lattice to be a set of points generated as the integer

combinations of some linearly independent basis. Periodicity

on L is defined by a sublattice N of L, by requiring that for all

x 2 L, x and the coset xþ N have the same color; meaning

that the coloring is periodic with respect to N. Two colorings of

L are equivalent if there is a symmetry mapping one onto the

other. Fig. 1 represents the integer lattice and the sublattice

4Z� 3Z. Fig. 2 demonstrates a periodic coloring of the lattice

and an equivalent coloring obtained by translation.

Lattices which have a periodic subset such as in Fig. 2 are of

interest to scientists studying crystallography and physical

chemistry. J. S. Rutherford used Pólya’s theorem and analytic

number theory to enumerate transitionally equivalent peri-

odic subsets of a lattice (Rutherford, 1992, 1993, 1995). Pólya’s

theorem has also been used in crystallographic applications

classifying lattices by their symmetry components (Bernstein

et al., 1997). In later work, Rutherford enumerated unique

subsets subject to rotation and reflection in two dimensions

(Rutherford, 2009). Recent work in material science focuses

on lattices subject to periodic boundary conditions and work

by Forcade & Hart (2009) has provided an enumeration

algorithm for nonequivalent periodic subsets given a lattice,

sublattice and group of symmetries. In contrast, Pólya’s

theorem does not assist in enumerating unique subsets, but

instead provides a formula (requiring polynomial expansion)

to find the number of nonequivalent subsets.

We present a purely algebraic approach that can be used to

determine the number of nonequivalent periodic colorings of

a given lattice over the group of symmetries of the lattice.

Since both translations and transformations (meaning reflec-

tions, rotations and introversion) are symmetries of a lattice,

our work can be viewed as a generalization of Rutherford’s

results. The algebraic approach is based on solving simulta-

neous systems of congruences and can be extended to arbi-

trary dimension.

Figure 1
Z

2 and the sublattice 4Z� 3Z.

Figure 2
Translationally equivalent green coloring.
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2. A brief mathematical explanation

We define periodicity on subsets of a lattice L, via a sublattice

N, meaning one identifies the lattice with elements of the

quotient group L=N. L=N can be represented by lattice points

of L inside the unit cell of N, with addition defined via the

periodicity. The lattice coloring is then defined by the coloring

of L=N, which is a coloring of the lattice points of L in the unit

cell of N, and then extended using periodicity. Using the

fundamental theorem of finitely generated abelian groups, N

can be defined to be fn1v1; . . . ; nkvkg, for an appropriately

chosen basis fv1; . . . ; vkg of the base lattice L. Then

L=N ffi Zk=ðn1Z� . . .� nkZÞ ffi Zn1
� . . .� Znk

.

We are naturally only interested in symmetries that

preserve the lattice and sublattice. Once we identify the

appropriate symmetries, we can then use Pólya’s theorem on

the action of the symmetries of the lattice on the quotient

group L=N to count nonequivalent colorings. The use of

Pólya’s theorem is dependent on determining the cycle index

of the action of a symmetry on the group (Read, 1987).

Viewing L=N as the lattice points of L inside the unit cell of

N, with the periodicity defining the group operations, gives a

natural geometric structure. The choice of basis for N will

affect the unit cell of N and thus determine the action of the

symmetries of L and N on the group L=N. Of course all the

symmetries will act on L=N regardless of the shape of the unit

cell. However, some unit cells will allow for a simpler calcu-

lation of the action than others. For example, a square unit cell

can be deformed to a non-square parallelogram without

changing the lattice or sublattice; both unit cells will admit the

same symmetries. But, the action of 90� rotation is readily

identified with the matrix

0 1

�1 0

� �

when acting on the square unit cell. One would have to apply

the change-of-basis matrix to obtain the proper action for the

parallelogram unit cell. We simplify calculations by restricting

our discussion to symmetries which have the standard action

on the unit cell, L and N, meaning the unit cell as a shape

shares these symmetries, or in the case of 60� rotational

symmetry the unit cell is the parallelogram formed by juxta-

posing two equilateral triangles. All the explicit formulas given

for the cycle index of a symmetry in two dimensions are given

only for lattices whose components have these standard

actions. Later in this paper we explain how one would modify

the calculations to account for a change-of-basis formula to

modify the action on the unit cell. We now establish a few facts

about the group of symmetries of a lattice.

A symmetry can be represented uniquely as a transforma-

tion of L and N, followed by a translation of the lattice L. A

symmetry could be identified by the underlying reflection or

rotation of the lattice, and the translation of L using the semi-

direct product. However, we have found that the following

presentation simplifies calculations. For a symmetry g, we say

g ¼ ð�; ðm1; . . . ;mkÞÞ, where � is a transformation of L and

m ¼ ðm1; . . . ;mkÞ a translation. Meaning the action of g is to

first perform the transformation �, and then translate by m, we

write

g ¼

a11 a12 . . . a1k m1

a21 a22 . . . a2k m2

..

.

ak1 ak2 . . . akk mk

0 0 . . . 0 1

0
BBBBB@

1
CCCCCA;

where aij is the jth coordinate of �ðuiÞ and fuig represents the

standard basis of the quotient group viewed as a k-dimen-

sional vector space. For a given x 2 L=N we will define an

element x0 2 L=N � f1g, such that

x0 ¼

x1

..

.

xk

1

0
BBB@

1
CCCA:

We will slightly abuse notation and refer to both x; x0 as x, with

the additional coordinate provided solely for computational

purposes as demonstrated below. Then

g � x ¼

a11 a12 . . . a1k m1

a21 a22 . . . a2k m2

..

.

ak1 ak2 . . . akk mk

0 0 . . . 0 1

0
BBBBB@

1
CCCCCA

x1

x2

..

.

xk

1

0
BBBBB@

1
CCCCCA:

It is not difficult to show that multiplication of g; g0 2 G will

result in another element of G. The other group axioms are

also readily verified.

The transformation of a lattice in two or three dimensions

has been studied and classified. For arbitrary dimension, the

work by Kuzmanovich & Pavlichenkov (2002) establishes the

finiteness of the symmetry group using techniques pioneered

by Minkowski. For a lattice L and sublattice N, the group of

symmetries is generated by the transformations that preserve

both L and N, and translations of L that are invariant with

respect to N.

3. Applying Pólya’s theorem

Pólya’s theorem can be used to solve coloring problems

regarding the number of nonequivalent colorings of certain

objects, where equivalence is determined via a group action.

The cycle index of a group element g will be a polynomial of

the form
Q

V
�i
i , where the action of g on L=N viewed as an

element of the symmetric group is the product of �i i-cycles,

�iþ1 ðiþ 1Þ-cycles etc. For a coloring consisting of k colors the

polynomial is expanded using V�
i ¼ ðx

i
1 þ . . .þ xi

kÞ
�. The

coefficient of x
j1
1 . . . x

jk
k in the expanding polynomial will

correspond to the number of nonequivalent colorings of j1

elements with color x1, j2 elements with color x2 etc. Read

(1987) provides a thorough introduction to Pólya’s theorem.
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4. The general method

The main step in determining the cycle index of a symmetry is

to solve multiple systems of simultaneous congruences. To

determine the cycle index of g 2 G, we simply count the

number of distinct solutions in L=N of ðgr � IÞx � 0 for a

given r, where I is the standard kþ 1-dimensional identity

matrix. This is equivalent to determining the number of

x 2 L=N that satisfy grx � xi ðmod niÞ. From group theory, we

know that x is contained in an r-cycle iff ðgr � IÞx � 0 and

ðgt � IÞx 6� 0; t< r.

Recall that two group elements x; y are said to be conjugate

if there exists some group element g such that gxg�1 ¼ y. For

groups of matrices, two matrices are conjugate exactly when

they are similar. Elements of the same conjugacy class will

have the same cycle index (James & Liebeck, 2008). This

means that symmetries consisting of conjugate transforma-

tions and identical translation elements will have the same

conjugacy class. We shall analyze each case by conjugacy class

of the transformation followed by an arbitrary translation. We

will then sum over all different possible translation vectors to

obtain the cycle index of all symmetries containing a given

transformation. For convenience we define the total cycle

index of a symmetry � to be
P

m2L=N vðgÞ, where g ¼ ð�;mÞ.

As mentioned above, it is possible that the basis for N will

skew the unit cell and disguise symmetries. For a symmetry

M� , we can diagonalize M� and find two matrices L;D such

that M� ¼ LDL�1 where D is diagonal. Then we can compute

powers of M�, by computing powers of LDL�1. We then

determine the cycle index polynomial using the same proce-

dure: counting the number of solutions to ðMr
� � IÞx � 0.

The next section contains a simple example that illustrates

how to find the solutions to ðgr � IÞx � 0 in L=N.

5. A quick example

This example illustrates how we find the cycle index poly-

nomial of a symmetry. Given the square base lattice L ¼ Z2,

the sublattice

N ¼ 5
1

0

� �
� 5

0

1

� �

and the symmetry g consisting of 90� rotation followed by

translation by the vector (1; 0), we wish to determine the cycle

index polynomial of g acting on L=N. We note that L=N is

Z=5Z� Z=5Z, which is the set of integers tuples reduced

modulo 5. We start by calculating gi � x to get the following

four systems of simultaneous congruences:

gx ¼

0 �1 1

1 0 0

0 0 1

0
B@

1
CA

x1

x2

1

0
B@

1
CA ¼

�x2 þ 1

x1

1

0
B@

1
CA;

g2x

x1

x2

1

0
B@

1
CA ¼

�x1 þ 1

�x2 þ 1

1

0
B@

1
CA; g3x ¼

x2

�x1 þ 1

1

0
B@

1
CA;

g4x ¼

x1

x2

1

0
B@

1
CA:

Since g has order 4 we know that all elements are contained in

either 1-, 2- or 4-cycles. For 1-cycles we have the following

system of congruences:

x1 � �x2 þ 1 ðmod 5Þ

x2 � x1 ðmod 5Þ

1 � 1:

Through substitution we see that 2x1 � 1 ðmod 5Þ ! x1 � 3;
x2 � 3 is the only possible 1-cycle. Solving for 2-cycles gives us

x1 � �x1 þ 1 ðmod 5Þ

x2 � �x2 þ 1 ðmod 5Þ

1 � 1:

We see that ðx1; x2Þ � ð3; 3Þ ðmod 5Þ is the only possible

2-cycle. But this is actually our 1-cycle and there are conse-

quently no 2-cycles. Then all other elements are in 4-cycles,

meaning that g has a cycle index polynomial of

V1
1|{z}

ð3;3Þ

V0
2|{z}

no 2�cycles

V
24
4

4 :

Fig. 3 shows how g partitions L=N. Each color represents a

different orbit, meaning that the action of g will permute the

four yellow points among themselves. The center point is fixed

by g and thus the only member of its cycle. There is a single

fixed point and six 4-cycles.

If we use only two colors then

V1
1 V6

4 	 ðxþ yÞ1ðx4 þ y4Þ
6:

We would need to sum over all the desired group elements in

order to apply Pólya’s theorem. The coefficient of xiy j in the

expansion would be the number of nonequivalent periodic

colorings of L containing i elements of color x and j elements

of color y.
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6. Solving systems of simultaneous congruences

The key to determining the cycle index polynomial is to solve

various systems of simultaneous congruences. The lemma

below is an application of the Chinese remainder theorem

with various moduli.

Lemma 6.1. 2x � m ðmod nÞ has a unique solution for x

when n is odd. When n is even, 1
2 of the possible m will produce

equations with two solutions for x, and the other possible m

will produce inconsistent equations having no solutions for x.

Similarly

2x1 � m1 ðmod n1Þ

2x2 � m2 ðmod n2Þ

..

.

2xk � mk ðmod nkÞ

has a unique solution for x when all the ni are odd. Otherwise

let S ¼ fnj : ð2; njÞ ¼ 2g , h ¼ jSj. Then ðnk�hÞ=2h of the

possible m ¼ ðm1; . . . ;mkÞ will each yield 2h solutions for x.

The other possible m will result in systems with no solutions.

For an abelian group A and a positive integer k, we use

�ðA; kÞ to denote the number of elements of order k in an

abelian group A. Computing �ðA; kÞ depends solely on the

factorization of A using the fundamental theorem of finitely

generated abelian groups. When A ¼ Z=nZ, �ðA; kÞ ¼ ’ðkÞ if

kjn and 0 otherwise; where ’ is the Euler-totient function

which measures the number of positive integers less than k

and relatively prime to k.

7. Specific calculations in two dimensions

This section presents some examples of how to compute the

total cycle index of a conjugacy class of symmetries in two

dimensions. The method is the same for a general symmetry.

We will determine the total cycle index of elements conju-

gate to a 90� rotation. We then present a table of the cycle

index polynomials for all two-dimensional transformations,

where the transformations have the standard action on the

lattice, sublattice and unit cell of the sublattice. The only

possible symmetries of the lattice and sublattice in two

dimensions are the standard symmetries 90, 180, 270�, reflec-

tion along either axis, or reflection along both axes, and

rotation by 60, 120, 240, 300�. For a given L=N ffi Zn1
� Zn2

we

note that a given symmetry can only permute two coordinates,

if the corresponding moduli are equal, i.e. ni ¼ nj.

7.1. 90��� rotation

The symmetry consisting of 90� rotation followed by a

translation m ¼ ðm1;m2Þ is represented by the following

matrix:

M90 ¼

0 �1 m1

1 0 m2

0 0 1

0
@

1
A:

Calculation reveals that M4
90 ¼ I, hence the n2 elements of

L=N are either in 1-, 2- or 4-cycles. We solve for 1-cycles first.

M90x ¼ x()

0 �1 m1

1 0 m2

0 0 1

0
B@

1
CA

x1

x2

1

0
B@

1
CA ¼

x1

x2

1

0
B@

1
CA

()

�x2 þm1

x1 þm2

1

0
B@

1
CA ¼

x1

x2

1

0
B@

1
CA:

Substitution gives us the equation

2x1 ¼ m1 �m2 ðmodÞ n: ð1Þ

From the lemma we see that solutions will vary depending on

whether n ¼ n1 ¼ n2 is even or odd. First we assume n is even,

then we note that m1 þm2 ffi m1 �m2 ðmodÞ 2. Thus for 1
2 of

the possible m 2 L=N we will have two solutions for x1 and

each solution for x1 will determine a unique solution for x2;

hence there are two solutions for ðx1; x2Þ. The other 1
2 of the

possible m 2 L=N will yield no solutions for ðx1; x2Þ, meaning

there are no 1-cycles.

For n odd, the system gives a unique 1-cycle.

We now look for potential 2-cycles. We see that

M2
90x ¼ x()

�1 0 m1 �m2

0 �1 m1 þm2

0 0 1

0
B@

1
CA

x1

x2

1

0
B@

1
CA

¼

�x1 þm1 �m2

�x2 þm1 þm2

1

0
B@

1
CA:

For n odd the system has a unique solution, that also satisfies

equation (1); hence there is no 2-cycle. For n even we use the

above lemma and find that there will be four possible solutions

for ðx1; x2Þ if m1 �m2 and m1 þm2 are both even. But

m1 �m1 is even iff m1 þm2 is even. Two of these solutions

will satisfy equation (1) above, so there are two elements

contained in a single 2-cycle.

Since all other elements are in 4-cycles, total cycle indexes

for rotation by 90� followed by arbitrary translation are

P
m2L=N

V1
1 V

n2�1
4

4 ¼ n2V1
1 V

n2�1
4

4 n odd:

P
m2L=N

m1þm2 even

V2
1 V1

2 V
n2�4

4
4 þ

P
m2L=N

m1þm2 odd

V
n2
4

4 ¼
n2

2 V2
1 V1

2 V
n2�4

4
4

þ
n2

2
V

n2

4
4 n even:

7.2. Table for two dimensions

Using the above techniques, Table 1 displays the symmetries

for a generic L=N ffi Zn1
� Zn2

, where it is assumed that the

transformations have the standard action on the unit cell.
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8. An explicit example

In this section we present a sample calculation of the cycle

index polynomial for the lattice L ¼ Z2 and the sublattice

generated by ð0; 6Þ and ð6; 0Þ, L=N ¼ Z=6Z� Z=6Z. Both L

and N are square and we will use the full group of symmetries,

having 8� 36 = 288 elements. The cycle index polynomial for

this group will be

1V6
1 þ 3V18

2 þ 8V12
3 þ 24V6

6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the identity

þ 36V2
1 V1

2 V8
4 þ 36V9

4|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
90o rotation

þ 9V4
1 V16

2 þ 27V18
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

180o rotation

þ 6V12
1 V12

2 þ 6V18
2 þ 12V4

3 V4
6 þ 12V6

6 þ 12V18
2 þ 24V6

6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reflection about an axis

þ 12V6
1 V15

2 þ 24V2
3 V5

6 þ 12V9
4 þ 24V3

12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reflection about x¼y

:

We expand using Pólya’s theorem on two colors to get

x36
þ x35yþ 9x34y2

þ 40x33y3
þ 282x32y4

þ 1455x31y5
þ 7278x30y6

þ 29849x29y7
þ 107399x28y8

þ 330369x27y9
þ 890152x26y10

þ 2096153x25y11

þ 4364470x24y12
þ 8045195x23y13

þ 13215574x22y14
þ 19368689x21y15

þ 25423509x20y16 þ 29898089x19y17 þ 31566122x18y18 þ . . .þ y36:

Note that we only need compute half of the coef-

ficients since x; y are interchangeable. Looking at

the coefficient of x18y18 tells us that there are

31566122 nonequivalent periodic colorings of our

lattice with 18 elements colored one color and 18

elements colored another color. Equivalently we

know that there are 31566122 nonequivalent

periodic 18-element subsets of our lattice. Without

equivalence the number of subsets is simply

36

18

� �
¼ 9705135300:

Taking equivalences has reduced the number of

subsets to less than 1% of the original number.

9. Conclusion

As can be seen, the calculation of the cycle index

for a given element is a simple procedure and the

above techniques generalize completely to any

arbitrary dimension. In higher dimensions there

are additional symmetries to the lattice, many of

which give more complicated systems of

congruences. For example, when working with a

symmetry component whose matrix is off-diagonal

(meaning all the diagonal entries are zero), the

system of simultaneous congruences will have

solutions dependent not only on the factorization

of the modulus n but also on the factorization of

the dimension k.
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Table 1
Two-dimensional symmetries.

Representative symmetry Total cycle index

Identity
P

djn1n2
�ðZn1

� Zn2
; dÞV

n1 n2
d

d

180� rotation
n1; n2 odd

n1n2V1
1 V

n1 n2�1

2
2

180� rotation
n1 even, n2 odd

n1n2

2 V2
1 V

n1 n2�2

2
2 þ

n1n2

2 V
n1 n2

2
2

180� rotation
n1; n2 even

n1n2

4 V4
1 V

n1 n2�4

2
2 þ

3n1n2

4 V
n1 n2

2
2

Reflection about an axis
n2 odd

P
djn1 ðd oddÞ n2’ðdÞV

n1
d

d V
n1 n2�n1

2d

2d þ
P

djn1 ðd evenÞ n2’ðdÞV
n1 n2

d

d

Reflection about an axis
n2 even

P
djn1 ðd oddÞ

n2’ðdÞ
2 V

2n1
d

d V
n1 n2�2n1

2d

2d þ V
n1 n2

2d

2d

� �
þ
P

djn1 ðd evenÞ n2’ðdÞV
n1 n2

d

d

90� rotation
n odd

n2V1
1 V

n2�1
4

4

90� rotation
n even

n2

2 V2
1 V1

2 V
n2�4

4
4 þ n2

2 V
n2

4
4

Reflection about x ¼ y
n odd

P
djn n’ðdÞV

n
d

dV
n2�n

2d

2d

Reflection about x ¼ y
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